質量分析による医薬品中金属の化学形態同定法の構築

期間: 令和5~6年度

研究背景

水銀(Hg)やヒ素(As)などの有害元素は、その化学形態により人体への影響が大きく異なる。

研究目的

質量分析計により、金属の化学形態の同定法を構築し、品質評価の分析レベル向上を目指す。

	金属水銀	メチル水銀	エチル水銀
構造	Hg	CH ₃ —Hg	CH ₃ - CH ₂ - Hg
毒性	低い	高い	低い
性質	誤飲しても消化管で吸収されることが、ほとんどない。	生体内でアミノ酸と結合し、たんぱく質の機能を阻害する。	体内からの排泄が早く、蓄積されることがほとんどない。

	亜ヒ酸	メチルアルソン酸	アルセノベタイン
構造	As(OH) ₃	AsO(OH) ₂ CH ₃	As ⁺ (CH ₃) ₃ CH ₂ COO ⁻
毒性	高い	低い	低い
性質	ヒ素の中で、最も毒性が高い。半 数致死量は20 mg/kgである。	無機ヒ素のメチル化により生成し、 発がん性を示す可能性がある。	ヒ素化合物の中では、比較的毒性 は低い。半数致死量は10 g/kg

実施計画

LC-MS、LC-MS/MS、LC-TOF/MSによる水銀、ヒ素の化学形態別の分析法を確立する。